

ENVIRONMENTAL PRODUCT DECLARATION IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Roof Cowls- Metal coated steel

EPD HUB, HUB-1310 Published on 18.04.2024, last updated on 18.04.2024, valid until 18.04.2029.

Created with One Click LCA

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Bevent Rasch AB
Address	Box 1739
Contact details	-
Website	https://www.bevent-rasch.se/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options A4-A5 and modules C1-C4, D
EPD author	Tobias Jakobsson
EPD verification	Independent verification of this EPD and data, according to ISO 14025: □ Internal verification ☑ External verification
EPD verifier	Nemanja Nedic, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Roof Cowls- Metal coated steel
Additional labels	-
Product reference	-
Place of production	Sweden
Period for data	Calendar year 2023
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3	7,7 %

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg of product
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	3,51E+00
GWP-total, A1-A3 (kgCO2e)	3,26E+00
Secondary material, inputs (%)	3.56
Secondary material, outputs (%)	89.9
Total energy use, A1-A3 (kWh)	20
Total water use, A1-A3 (m3e)	0.01

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Bevent Rasch is an industry-leading manufacturer of ventilation products in Sweden and the Nordic countries, with collaboration partners on the export market. Our products are at the forefront of development and have long set standards followed by the rest of the industry. With innovation, technology, and a long-term perspective as watchwords, we develop smart, high-tech solutions and safe installation methods, delivered with uncompromising timeliness.

PRODUCT DESCRIPTION

Our cowls are developed and manufactured to ensure optimal performance and excellent water separation. The models are suitable for a variety of application areas and utilised in many different types of projects, including offices, schools, hospitals, laboratories, and industrial and residential buildings. All cowls are manufactured in our modern factory in Motala, Sweden, and can be customised based on your specifications by our product-design department.

For all product sizes and weight see Appendix 1.

Further information can be found at https://www.bevent-rasch.se/.

Raw material category	Amount, mass- %	Material origin
Metals	99,87	Europe
Minerals		
Fossil materials	0,13	Europe
Bio-based materials		

PRODUCT RAW MATERIAL MAIN COMPOSITION

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0.068

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of product
Mass per declared unit	1 kg
Functional unit	-
Reference service life	30

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	oduct s	tage		age	Use stage End of life stage								Beyo the syste ound es	e em dari				
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	1	D	
x	x	x	x	x	MN D	MN D	MN D	MN D	MN D	MN D	MN D	×	x	x	x	×		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recoverv	Recycling

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The raw materials and components (A1) are predominantly sourced from European suppliers, with a few minor components sourced from Asian countries. The final products manufacturing (A3) occurs in Motala, Sweden. This manufacturing process entails cutting and shaping steel sheets, assembling, and packaging. Waste generated at the factory is sent for recycling. All operations at the factory site are powered by electricity, which is fossil-free. Approximately 30% of this electricity is generated from on-site solar cells.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

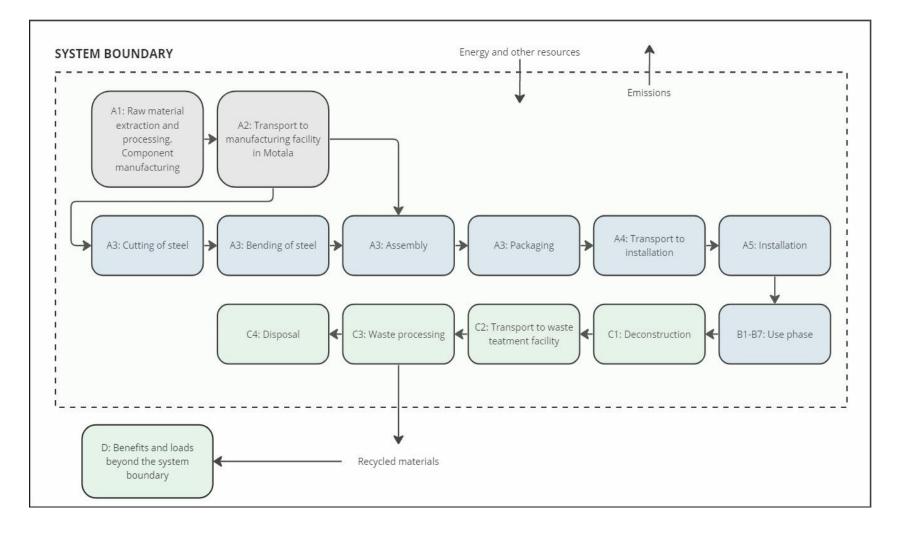
The assumed average transportation distance from the production plant to the building site is 250 km, utilizing lorries as the transportation method. It is assumed that the vehicle capacity utilization volume factor is 100%, indicating a full load. Although this factor may vary, the impact of transportation emissions on the overall results is considered minor, thus variations in load are regarded as negligible for this study. As a conservative measure, empty returns are factored into this analysis, incorporated through an average load factor within the Ecoinvent transport datapoints. Proper packaging ensures that transportation does not incur losses for the products being transported. Installation loss of the product is estimated to be zero. The handling of packaging has been considered.

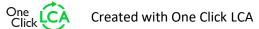
It is assumed that no energy is needed during the installation process, except for human labour. However, the impact arises from the waste treatment of the packaging materials. The transportation of this waste is modelled using the transportation distance to treatment is assumed as 50 km and the transportation method is assumed to be lorry.

PRODUCT USE AND MAINTENANCE (B1-B7)

The product is assumed to have no environmental impacts during the use phase; therefore, these modules are not included in the analysis. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)


It is assumed that 100% of the waste is collected and transported to the waste treatment center. Transportation distance to treatment is assumed as 50 km and the transportation method is assumed to be lorry (C2). Approximately 90% of steel is assumed to be recycled based on European Comission 2020 (C3). It is assumed that the remaining 10% of steel is taken to landfill for final disposal (C4). Due to the recycling process, the end-of-life product is converted into recycled steel, while the wooden pallet is in part recycled and mostly incinerated with energy recovery (D). The raw material, which contains 20% recycled steel, is deducted from the 90%. Thus, 70% of the net flow of steel is to be credited in Module D.



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	Multiple products
Averaging method	Representative product
Variation in GWP-fossil for A1-A3	7,7 %

All products are manufactured at the same site in Motala, Sweden and goes through the same processes.

The roof hoods manufactured are made from galvanized steel sheets, fasteners, and sealant. The range of the percentage of steel sheet in these products is 96-99.9%. The reference product, which is a typical product, contains 99.2% steel sheet, with the remainder being fasteners and sealant.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO ₂ e	3,24E+00	1,26E-01	-1,08E-01	3,26E+00	4,90E-02	2,58E-01	MND	3,31E-03	4,69E-03	1,97E-02	6,44E-04	-1,16E+00						
GWP – fossil	kg CO ₂ e	3,24E+00	1,26E-01	1,38E-01	3,51E+00	4,90E-02	6,96E-03	MND	3,31E-03	4,69E-03	1,97E-02	6,43E-04	-1,16E+00						
GWP – biogenic	kg CO ₂ e	2,04E-04	6,71E-06	-2,51E-01	-2,51E-01	0,00E+00	2,51E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
GWP – LULUC	kg CO ₂ e	9,43E-04	9,40E-05	5,36E-03	6,39E-03	1,92E-05	2,43E-06	MND	3,30E-07	1,73E-06	2,58E-05	5,09E-07	-1,90E-04						
Ozone depletion pot.	kg CFC-11e	1,64E-09	2,45E-08	1,25E-08	3,86E-08	1,13E-08	4,93E-10	MND	7,07E-10	1,08E-09	2,43E-09	2,16E-10	-4,52E-08						
Acidification potential	mol H⁺e	9,18E-03	2,65E-03	8,06E-04	1,26E-02	1,99E-04	2,05E-05	MND	3,44E-05	1,99E-05	2,50E-04	5,04E-06	-4,77E-03						
EP-freshwater ²⁾	kg Pe	1,30E-06	1,44E-06	7,30E-06	1,00E-05	3,44E-07	7,88E-08	MND	1,10E-08	3,84E-08	1,06E-06	5,71E-09	-4,79E-05						
EP-marine	kg Ne	2,26E-03	6,86E-04	2,06E-04	3,15E-03	5,93E-05	9,39E-06	MND	1,52E-05	5,90E-06	5,28E-05	1,86E-06	-9,76E-04						
EP-terrestrial	mol Ne	2,44E-02	7,62E-03	2,30E-03	3,43E-02	6,54E-04	8,04E-05	MND	1,67E-04	6,51E-05	6,11E-04	1,92E-05	-1,14E-02						
POCP ("smog") ³⁾	kg NMVOCe	6,73E-03	2,00E-03	6,94E-04	9,43E-03	2,00E-04	2,34E-05	MND	4,59E-05	2,08E-05	1,68E-04	5,60E-06	-5,80E-03						
ADP-minerals & metals ⁴⁾	kg Sbe	2,27E-04	2,79E-07	2,39E-06	2,30E-04	1,73E-07	8,91E-09	MND	1,68E-09	1,10E-08	2,65E-06	1,25E-09	-2,21E-05						
ADP-fossil resources	MJ	3,80E+01	1,71E+00	2,04E+01	6,01E+01	7,27E-01	4,59E-02	MND	4,45E-02	7,05E-02	2,67E-01	1,47E-02	-1,02E+01						
Water use ⁵⁾	m³e depr.	2,16E-01	1,12E-02	5,22E-01	7,49E-01	3,36E-03	4,14E-03	MND	1,20E-04	3,15E-04	5,18E-03	4,74E-05	-2,11E-01						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Particulate matter	Incidence	2,32E-09	7,82E-09	1,40E-08	2,41E-08	4,22E-09	3,24E-10	MND	MND	MND	MND	MND	MND	MND	9,22E-10	5,41E-10	3,27E-09	1,01E-10	-7,73E-08
Ionizing radiation ⁶⁾	kBq U235e	1,54E-03	1,09E-02	1,41E+00	1,43E+00	3,80E-03	4,10E-04	MND	MND	MND	MND	MND	MND	MND	2,05E-04	3,36E-04	2,98E-03	6,65E-05	4,09E-02
Ecotoxicity (freshwater)	CTUe	1,53E+00	1,35E+00	6,57E+00	9,45E+00	6,03E-01	4,80E-02	MND	MND	MND	MND	MND	MND	MND	2,68E-02	6,34E-02	1,21E+00	9,95E-03	-4,15E+01
Human toxicity, cancer	CTUh	1,32E-10	7,59E-11	4,34E-10	6,42E-10	1,87E-11	3,78E-12	MND	MND	MND	MND	MND	MND	MND	1,03E-12	1,56E-12	3,70E-11	2,44E-13	9,83E-09
Human tox. non-cancer	CTUh	6,25E-10	1,11E-09	3,64E-09	5,37E-09	6,12E-10	1,53E-10	MND	MND	MND	MND	MND	MND	MND	1,94E-11	6,27E-11	1,65E-09	6,38E-12	-2,78E-08
SQP ⁷⁾	-	1,29E-01	9,08E-01	2,40E+01	2,50E+01	5,09E-01	5,87E-02	MND	MND	MND	MND	MND	MND	MND	5,79E-03	8,12E-02	5,37E-01	3,14E-02	-3,99E+00

6) EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Renew. PER as energy ⁸⁾	MJ	2,49E+00	4,61E-02	9,61E+00	1,22E+01	1,04E-02	2,31E-03	MND	2,54E-04	7,94E-04	4,73E-02	1,30E-04	-8,87E-01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	2,20E+00	2,20E+00	0,00E+00	-2,20E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	2,49E+00	4,61E-02	1,18E+01	1,44E+01	1,04E-02	-2,20E+00	MND	2,54E-04	7,94E-04	4,73E-02	1,30E-04	-8,87E-01						
Non-re. PER as energy	MJ	3,80E+01	1,71E+00	2,01E+01	5,98E+01	7,27E-01	4,59E-02	MND	4,45E-02	7,05E-02	2,67E-01	1,47E-02	-1,01E+01						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	2,73E-01	2,73E-01	0,00E+00	-2,73E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	3,80E+01	1,71E+00	2,04E+01	6,01E+01	7,27E-01	-2,27E-01	MND	4,45E-02	7,05E-02	2,67E-01	1,47E-02	-1,01E+01						
Secondary materials	kg	3,56E-02	9,58E-04	9,53E-03	4,61E-02	2,44E-04	3,36E-05	MND	1,74E-05	1,96E-05	2,97E-04	3,12E-06	6,70E-01						
Renew. secondary fuels	MJ	8,63E-06	3,60E-06	7,43E-02	7,43E-02	2,68E-06	3,31E-07	MND	5,70E-08	1,97E-07	1,54E-05	8,26E-08	-1,07E-04						
Non-ren. secondary fuels	MJ	1,29E-21	0,00E+00	0,00E+00	1,29E-21	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	8,24E-04	2,98E-04	1,29E-02	1,40E-02	9,14E-05	1,65E-05	MND	2,70E-06	9,13E-06	1,57E-04	1,61E-05	-2,49E-03						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	9,08E-02	3,52E-03	1,59E-02	1,10E-01	8,15E-04	6,18E-05	MND	5,96E-05	9,34E-05	1,81E-03	0,00E+00	-3,87E-01						
Non-hazardous waste	kg	1,47E-01	6,18E-02	2,49E-01	4,58E-01	1,45E-02	1,25E-01	MND	4,19E-04	1,54E-03	5,79E-02	1,01E-01	-1,91E+00						
Radioactive waste	kg	7,15E-04	1,17E-05	3,05E-04	1,03E-03	5,00E-06	1,54E-07	MND	3,13E-07	4,71E-07	1,56E-06	0,00E+00	3,03E-06						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	2,98E-01	2,98E-01	0,00E+00	5,50E-02	MND	0,00E+00	0,00E+00	8,99E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,53E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,94E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	3,15E+00	1,25E-01	1,41E-01	3,42E+00	4,85E-02	1,11E-02	MND	3,27E-03	4,64E-03	1,94E-02	6,11E-04	-1,10E+00						
Ozone depletion Pot.	kg CFC-11e	1,53E-09	1,94E-08	1,07E-08	3,17E-08	8,98E-09	3,97E-10	MND	5,60E-10	8,55E-10	1,97E-09	1,71E-10	-5,05E-08						
Acidification	kg SO ₂ e	7,37E-03	2,10E-03	6,27E-04	1,01E-02	1,54E-04	1,54E-05	MND	2,45E-05	1,54E-05	2,02E-04	3,81E-06	-3,86E-03						
Eutrophication	kg PO ₄ ³ e	8,38E-04	2,86E-04	3,43E-04	1,47E-03	3,50E-05	2,04E-04	MND	5,69E-06	3,52E-06	6,67E-05	7,26E-06	-1,98E-03						
POCP ("smog")	$kg \ C_2 H_4 e$	6,83E-04	5,64E-05	5,04E-05	7,90E-04	6,32E-06	1,53E-06	MND	5,36E-07	6,03E-07	7,64E-06	1,74E-07	-6,62E-04						
ADP-elements	kg Sbe	2,27E-04	2,74E-07	2,42E-06	2,30E-04	1,70E-07	8,47E-09	MND	1,65E-09	1,07E-08	2,65E-06	1,23E-09	-2,21E-05						
ADP-fossil	MJ	3,62E+01	1,71E+00	2,04E+01	5,83E+01	7,27E-01	4,59E-02	MND	4,45E-02	7,05E-02	2,67E-01	1,47E-02	-1,02E+01						

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	3,24E+00	1,26E-01	1,38E-01	3,51E+00	4,90E-02	6,96E-03	MND	MNR	0,00E+00	0,00E+00	0,00E+00	-1,16E+00						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? <u>Read more online</u> This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Nemanja Nedic, as an authorized verifier acting for EPD Hub Limited 18.04.2024

Appendix 1

Roof Cowl models

*The weight is accurate as of the date of publication; any adjustments are detailed in the data sheet.

BREA		DELTA-AH		DELTA-DA		BRDJ		DELTA-DU		BRSF	
Size øD	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]	Size øD	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]
100	0,8	200	14	200	28	100	0,8	200	26	200	12
125	1,1	300	22	300	44	125	1	300	38	300	18
160	1,7	400	30	400	60	160	1,9	400	54	400	24
200	2,6	500	40	500	80	200	2,5	500	70	500	33
250	4	600	52	600	104	250	4	600	90	600	46
315	6,5	800	80	800	160	315	6	800	138	800	74
400	19	1000	113	1000	226	400	15	1000	190	1000	95
500	25	1200	162	1200	324	500	21	1200	282	1200	117
630	45	1400	209	1400	418	630	38	1400	362	1400	148
800	75	1600	262	1600	524	800	57	1600	450	1600	181
1000	115	1800	321	1800	642	1000	75	1800	548	1800	218
1250	270	2000	386	2000	772	1250	92	2000	656	2000	260

DELTA-KH		BRSK		DELTA-UH		BRSI		BRLH		BRKA	
Size	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]	Size øD	Weight [kg]	Size øD	Weight [kg]
200	23	200	24	200	13	200	14	125	1	100	0,5
300	34	300	33	300	19	300	20	160	2	125	0,5
400	47	400	43	400	27	400	27	200	3	160	0,7
500	63	500	60	500	35	500	36	250	7	200	0,9
600	81	600	75	600	45	600	46	315	10	250	1,3
800	122	800	136	800	68	800	76	400	17	315	2
1000	172	1000	171	1000	95	1000	97	500	28	400	2,5
1200	346	1200	210	1200	141	1200	120	630	40	500	4
1400	316	1400	262	1400	181	1400	151	800	70		
1600	395	1600	320	1600	225	1600	186	1250	150		
1800	482	1800	383	1800	274	1800	223	1500	200		
2000	578	2000	438	2000	328	2000	281				

BRTE		BRBA		DELTA-RK		BRTH		DELTA-RA	
Size	Weight [kg]	Size ØD	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]	Size	Weight [kg]
4-1,5	9,4	315	16	600	96	300	7	600	63
5-1,5	12,3	400	24	800	143	400	12	800	91
6-1,5	14,5	500	36	1000	224	500	19	1000	131
6-2	17	630	61	1200	300	700	32	1200	173
7-2	20	800	97	1400	383	900	43	1400	220
7-2,5	23	1000	146						
8-2	23,5	1250	239						
8-3	30	1500	350						
9-3	34,5								
9-4	42								
10-3	39								
10-4	47								
11-3	45								
11-4	54								
12-3	50								
12-4	59								
12-5	69								
13-3	55								
13-4	65								
13-5	75								
14-3	60								
14-4	71								
14-5	82								
15-4	77								
15-5	90								
15-6	102								
16-4	84								
16-5	97								
16-6	110								

